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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

TECHNICAL NOTE D-87 

EFFECTS OF CHEMICAL DISSOCIATION AND MOLECULAR 

VIBRATIONS ON STEADY ONE-DIMENSIONAL FLOW 

By Steve P . Heims 

Equations are derived from which the one-dimensional flow of gases 
simultaneously subject to dissociation and vibration can be computed. 
The cases considered include both frozen and equilibrium flows and flows 
where either dissociation or vibration is frozen while the other is in 
equilibrium. 
considered and if viscosity and heat conduction are negligible. 

These flows are isentropic if no shocks occur in the region 

It is found that for flow of the gas in chemical equilibrium the 
temperature and the degree of dissociation are convenient independent 
variables to use. 
the flow. 

They are related through the entropy, a constant along 

Flows in which the chemical reaction and vibrations are not in 
equilibrium are also studied. 
the streamtubes, even when viscosity, heat conduction, and shock waves 
are absent. The analysis of nonequilibrium flow is much simplified by 
the introduction of a vibrational temperature. Further, the aefinition 
of entropy is generalized to include the case of the reacting vibrating 
gas out of equilibrium. Nonequilibrium flow cannot be treated with the 
same generality as isentropic flow, because some specific mathematical 
constraint is required to fully specify the flow. Some of the rather 
specific results which come from the examples treated are: 

In these flows the entropy increases along 

(1) In the relaxation region behind a shock wave in a shock 
tube, pressure and density are related by a simple formula, 
which is not of the polytrope form. 

(2) If the relaxing flow behind a normal shock is at constant 
density, or at constant pressure, then the streamtube con- 
tracts. The contraction for constant density flow is the 
larger, the higher the free-stream Mach number; for constant 
pressure the total area change.is about a factor of 2/7 when 
only vibrations relax. 

(3) Relaxing isothermal flow behind a normal shock corresponds 
to a rapidly expanding streamtube. 
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(4) If in a shock tube both vibrational relaxation and 
chemical reaction are occurring behind the normal shock wave, 
then both the degree of dissociation and the degree of vibra- 
tional excitation can be calculated from measurements of the 
pressure and temperature distributions behind the wave. 

When vibration and dissociation are both occurring simultaneously, 
then the two processes can, in general, be expected to interact. 
coupling can be included in a simple approximate model of the relaxation. 
When the reaction is relatively very fast, this model of the relaxation 
process yields the result that the density overshoots its equilibrium 
value, then decreases to below its equilibrium value and finally reaches 
equilibrium from below. 

The 

A bibliography is given at the end of the report. 

INTRODUCTION 

Until a few years ago, in the solutions to problems of supersonic 
aerodynamics, the assumption was usually made that the air was an inert 
gas, and that the ratio of specific heats was a constant. 
some of these problems have been solved again, allowing for certain 
chemical reactions as well as the excitation of molecular vibrations. 
In this case it has usually been assumed that the air is in thermodynamic 
equilibrium everywhere in the flow field (e.g., refs. 1 through 5 ) .  

More recently 

The temperature at the downstream side of the shock wave which is 
formed by a body moving through a gas at high Mach numbers is high enough 
to induce chemical reactions and excitation of molecular vibrations. If 
these processes occur very slowly, the reactions and molecular vibrations 
may be regarded as "frozen," and the constant solution is applicable. 
On the other hand, if these reactions and excitations occur very rapidly, 
then the thermodynamic equilibrium solution is valid. 

- 
y 

A third case which may arise is that a particular reaction is 
neither sufficiently fast to be regarded as frozen nor sufficiently slow 
to be regarded as in chemical equilibrium. This occurs when the time 
characteristic of the reaction is comparable to the ratio of the charac- 
teristic length of the problem to the flow velocity. In this case the 
flow will under no circumstance be isentropic because the finite reaction 
rate introduces an entropy increase. In general, the flow will have some 
features qualitatively different from those of equilibrium flow or frozen 
flow. 
rates of excitation of the molecular vibrations are considerably more 

The flow problems with finite chemical reaction rates or finite 

difficult than the frozen flow problems or equilibrium problem. 1 

The present paper is devoted to developing a general method by which 
one is able to deal with frozen and equilibrium flow as well as non- 
equilibrium flow for simple situations. The central idea is to introduce 
the vibrational energy and the degree of dissociation as two additional 
(in general, independent) variables. If the process measured by either 

. 
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one of these variables is frozen or in equilibrium, then the formal 
stateriierl'i of thlo f s c t  i l l n w s  one to eliminate this variable from the 
equations. 

The paper falls into three parts: (1) The conservation equations 
are set up for the general case, using vibrational energy and degree of 
dissociation as variables. The equation for the entropy change of 
relaxing flow is also given. 
solutions for the one-dimensional flow in the isentropic cases are given. 
In particular, simple relationships that exist between pairs of variables, 
such as pressure and temperature, are derived. The results for the 
frozen and equilibrium flows (both of which are isentropic) are exhibited 
explicitly whenever possible, permitting ready comparison. 
finite relaxation lengths are analyzed. In this case, since there exist 
one or two additional independent variables, it is required that some 
further restriction be put on the flow before a unique solution can be 
obtained. Invariably a length, characterizing the relaxation process, 
enters into the problem and the absolute dimensions of the streamtube 
become important. In this respect, the results are qualitatively different 
from those for isentropic flow; still the nonisentropic solutions reduce 
to the appropriate isentropic ones if the relaxation lengths are extremely 
long or extremely short compared to the geometric parameters in the prob- 
lem. 
In particular, the coupled relaxation of vibrations and reaction is 
worked out for flow in a shock tube. 

(2) The isentropic flows are found and the 

(3) Flows with 

Some specific and rather simple cases will be analyzed in detail. 

There are several papers on the nonequilibrium features of flow. 
Those by Freeman (ref. 6) and by Bray (ref. 7) treat relaxation due to 
dissociation in the "idealized gas" introduced by Lighthill (ref. 5), 
but do not include vibrational relaxation. Detailed analyses of the 
relaxation due to oxygen dissociation have been made by Wood (ref. 8) and 
Evans (ref. g), and oxygen recombination in air has been analyzed by the 
present author (ref. 10). There, too, the vibrational heat capacity lag 
is neglected. References to earlier work are given in reference 10. 
Rather general formulas which apply to nonisentropic flow are given by 
Resler in reference 11 and also by Wood and Kirkwood (ref. 12). 
ical iategration of flow across a shock including not only relaxation of 
internal degrees of freedom but also viscosity and heat conduction has 
been carried through by Talbot (ref. 13) .  

A numer- 

The position of the present paper is intermediate between those 
which contain detailed numerical integration using tabulated thermodynamic 
functions for air and those which make use of the simple Lighthill gas 
model. It is an attempt to strike a happy medium between accuracy and 
simplicity as well as between generality and explicitness. 
chemistry and thermodynamics discussed here are of general applicability, 
attention is restricted to one-dimensional flow where the solutions can 
be given in explicit algebraic form. 

Although the 



4 

a 

A 

A2 

B 

C 

cP,cP 

D 

e 

f 

h 

k 

K=K ( T) 

K ( T , T,) 

m 

M 

n 

N J ,  

N O  

o,o, 

SYMBOLS 

the variation of taken along streamlines; sound speed 

cross-sectional area 

any homonuclear diatomic molecule 

number of atoms, in free or combined form, per unit mass of 
fluid 

constant density characteristic of a particular gas A2 
(Numerical values are given in appendix B.) 

ah dimensionless specific heats, - 
dT)p7 %)p 

dissociation energy per diatomic molecule 

NOD internal energy per unit mass divided by - 
MA2 

partition functions 

enthalpy per unit mass divided by '2; also Planck's constant 
MA* 

Boltzmann's constant 

equilibrium constant , defined in equation (20) 
equilibrium constant with frozen vibrations, defined in 
equation (21) 

mass flux per unit cross section in units of density, p'u 

molecular weight 

number of molecules per unit volume 

nitrogen 

Avogadro's number 

oxygen 

. 
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pres sure 

m e )  pressure divided by 

universal gas constant 

entropy per unit mass, 

temperature divided by 

time 

f l o w  speed divided by 

R divided by - 
MA2 

mass fraction of gas dissociated, nA 

A2 2n +nA 

distance along the f l o w  

d log p 
d 1% P 

derivative along the flow direction of 

vibrational energy per molecule, E (T) =e [ exp ($)-g-l 

vibrational frequency of moiecuie 

relaxation distance 

density divided by C 

number characteristic of a particular species of molecule, 
h v  
D 
- 

constant (see eq. (21)) 
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Sub script s 

A 

A 2  

C 

D 

e 

rot 

tr 

v 

1,2?3 

0 

I 

molecule of type 0 or N 

molecule of type 0, o r  N, 

chemical 

dissociation 

electronic 

rotational 

translational 

vibrational 

value of variables at a particular point in the flow (see 
sketch (b)) 

initial value 

Superscripts 

dimensional variable 

time derivative 

I. THE BASIC EQUATIONS AND CONCEPTS 

Limitations of Present Analysis 

The problem will be restricted to one-dimensional steady-state flow 
Thus, it would apply to channel flow or to flow along a (assumption 1). 

streamtube, where the cross-sectional area of the tube is regarded as a 
variable. The nature of the approximation involved in the treatment of 
a physical flow as one-dimensional is discussed in books on aerodynamics. 
Some of the present results are directly applicable to two- and three- 
dimensional flow, while others apply only to the one-dimensional flow. 
The extension of the results to two- and three-dimensional flow is beyond 
the scope of the present paper (see section entitled "Application of 
Foregoing Results - Extension of Theory to Air"). 

-. 

c 

The analysis is further restricted by the assumption of an explicit 
It is assumed that we are model for the gas in question (assumption 2). 
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dealing with a pure homonuclear diatomic gas, which is subject to 
harmonic molecular vibrations, and which is undergoing the dissociation- 
recombination reaction A, 2 2A. 
correct for pure N, or pure 0,. Under a rather wide range of circun- 
stances, to be examined later, it yields results directly applicable to 
air. The molecules are treated as independent particles, so that the 
attractive intermolecular forces responsible for liquefaction are ignored 
This is a satisfactory assumption except at such low temperatures and 
high pressures that the gas is near to condensation. 

This model would, ror exampie, be 

In the present model of the gas, the small effects arising from 
vibration-rotation coupling and anharmonic vibrations are not included. 
In addition, the simplifying assumption is made that changes in electronic 
excitation do not occur. At very high temperatures this last assumption 
is not valid because the probability of any particular molecular species 
being electronically excited (relative to not being excited) is approxi- 
mately given by the Boltzmann factor1 exp( -Oe/T), where 8, is a tem- 
perature characteristic of the species. For atomic oxygen and nitrogen 
the characteristic temperatures are 22,710° K and 27,610~ K, respectively, 
while for molecular oxygen and nitrogen they are 11,340' K and 71,575' K, 
respectively. 
electronic excitations is shown graphically for various species and for 
air. ) 

(In figs. 1 and 2 the fraction of internal energy in 

Finally, viscosity, heat conduction, diffusion, radiation, and the 
possible formation of shock waves are neglected in the present analysis 
(assumption 3) . 
and chemical relaxations. 

The only entropy-producing mechanisms are the vibrational 

Mathematical Description of the Gas 
(Internal Energy and Equation of State) 

The nature of the gas is fully specified by the expression for the 
internal energy of the gas together with the equation of state. In 
mathematical language the model of the gas will consist of these two 
equations, which will embody assumption 2. Since these equations char- 
acterize the gas, and not any particular flow, they are not restricted 
to one-dimensional analysis and do not involve assumptions 1 and 3. 

To write the expression for the internal energy of the gas, two 
additional variables are introduced, the vibrational energy per gram of 
gas, ev', and the degree of dissociation defined by x=n~/2n~,+n~. 
Here x is the mass fraction of A in atomic form. 

excitation of a molecule, it is noted that at equilibrium the ratio of 
electronic energy per molecule to its translational energy is of the order 
(Oe/l')exp( -8 /T) , falling off - less rapidly with increasing ee/T than 
the exp( -eePT) factor alone. 

'In the estimation of the error int,roduced by neglecting the electronic 
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The internal energy per gram of gas, as calculated from elementary 
statistical mechanics, consists of "random" translational motion2 
etr'=(3RT'/2MA ) (l+x), rotational energy 
tional energy ev', and energy due to dissociation eD'=(NoD/MA )x. The 

electronic energy is neglected, as is stated in assumption 2 above. 

er,,t1=(~~'/~A2) (1-x) , vibra- . 
2 

2 

With only this approximation the internal energy per gram of gas is 

RT' 5+x + e '=ev +etrt+erOtl+eD1=evt + - - 
MA2 ' MA2 

The equation of state of the gas is 

PI = (l+x) RT - ' 
P '  M -42 

Equation (2) does not require chemical equilibrium nor vibrational 
equilibrium. The temperature T' is the temperature of the random 
translational motion of the molecules and m y  not be at all characteristic 
of the vibrational motion. The pressure of the gas comes from transla- 
tional motion only. Following Lighthill (ref. ?), we introduce convenient 
dimensionless variables 

In terms of these variables, equation (1) becomes 

rn 

T=RT1/NoD=T'/OD, ev=ev'M /NOD, and e=e '(MA2/NoD) . A2 

e =e ,+x+T(?) ( 3 )  

and the dimensionless entha.lpy3 h=e+(MA2/NoD) (pt/p ') is from equations (2) 
and ( 3 )  

word "random" unfortunately suggests that the motion of these 
molecules is chaotic, following no fixed laws of motion. What is meant 
is that the detailed motion of the individual molecules is not specified; . 
nor are these detailed motions relevant for the present calculations, 
since only average statistical quantities are needed, such as the average 
energy per molecule. 
individual molecular motions from the collective drift or flow of the gas. 

where H is the enthalpy per mol of gas. 

The word "random" is used to distinguish these .I 

3The quantity h/T is equal to the usually tabulated quantity H/RT, 
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h= ev+x+T(p) 
\ - ,  

(4) 

In the simple expressions (3) and (4) only assumption 2 is made, and no 
other simplifying assumptions are made, such as those by Lighthill 
(ref. 5) in treating equilibrium flow, and by Freeman (ref. 6) . Freeman 
treats the flow behind a shock wave, making the simplifying assumption 
that the vibrational energy ev is equal to exactly half of the classical 
equilibrium value and dissociation is the only relaxation phenomenon. 
Their assumptions lead to a value of r=4/3 at low temperatures, while 
the present model leads to the correct value of 7 / 5 .  

Differential Flow Relations 

For steady one-dimensional flow, in which friction forces and heat 
conduction are neglected (assumptions 1 and 3), the conservation equations 
derived in books on aerodynamics are 

u'du' + dh' = 0 (energy) ( 5 )  

dP' 
D '  

u'du' + - = 0 (momentum) 

These first two can be combined to give the implicit condition that no 
heat is added to the system: 

O=dh' - - dP ' = de '+p 'd(.$) 
P '  

The bulk of the subsequent analysis consists in particular 
applications of the flow equations (5) to (8) to a gas whose energy, 
enthalpy, and equation of state are given by equations ( 3 ) ,  ( 4 ) ,  and (2), 
respectively. For this analysis it will be useful to write the flow 
equations (5) and (8) in the more explicit form obtained by inserting 
the expressions (3) and (4): 
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dev+(, + 5 ) ~  + 5+x dT-(l+x)T - dP = 0 
P 

Here the dimensionless measure of velocity u=u'J M*,/N0D has been 

introduced. The unit of velocity NoD/MA, represents approximately the 

average speed of random thermal motion of gas molecules at the temperature 
corresponding to the dissociation energy of the molecule. This average 
speed of gas molecules is always approximately equal to the sound speed 
at the same temperature. 

r 
Equation (9) simply expresses the constancy of the total enthalpy 

along the streamtube in terms of the four variables u, ev, x, and T. 
Similarly, equation (10) expresses the condition of zero heat addition 
to the systex during the flow. 

The Local Polytropic Exponent 

In many aerodynamic applications, the quantity y = ( d  l o g  p ) / (d  log p )  
plays an important role, where dp and dp are taken as the actual pres- 
sure and density variation along the flow. For this reason we give here 
the general expression for 7 in terms of the variables used above: 

dx de, (7+3~)+(2+3T) + 2 - dT 

(5+x)+(2+T) - + 2 - 
y = - -  dh - 

de d x  de, 
dT dT 

The derivatives appearing in equation (11) refer to the actual 
process the gas is undergoing. The quantity y has f r o m  its definition 
the significance of a local polytropic exponent. 

For nonreacting gases with constant specific heats it is well known 
that y is equal to the ratio of specific heats Cp and Cp. The 
equality y=Cp/Cp 
tional equilibrium. It does not hold, however, in a chemically reactive . 
gas. 

is also true for a chemically inactive gas in vibra- 

In nonequilibrium problems, Cp and Cp are not even uniquely defined. 
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A further property of y in a nonreacting, nonvibrating gas is its 
We shall not here enter into relation to the speed of sound 

the question: 
speed in a relaxing medium? The question is an involved one because 
vibrating and dissociating air is a dispersive medium (ref. 14); the 
problem is outside the scope of a paper on steady flow. 

T(p/p)=a2. 
In what, if any, sense does Jr(pipj represent the sound 

In one-dimensional flow, however, the speed, Jy(p/p), does have in 
any case one special significance; namely, it is a direct consequence of 
basic equations (6) and (7) that at a throat of a nozzle, unless dp'=O, 
the flow velocity is related to y by 

Ut hr oa t = Jrn 
This result is valid for nonequilibrium flow as well as isentropic flow. 

The Entropy in Nonequilibrium Flow 

As was mentioned earlier, the right-hand side of equation (10) is 
the heat added to the system. It is readily verified that dividing 
equation (10) by the temperature 
so that the right-hand side may not generally be written as T ds. In 
nonequilibrium flow, entropy may be produced within the system without 
any heat exchange with the surroundings. 

T does not yield an exact differential, 
- 

In the theory of irreversible processes, the concept of entropy is 
generalized to include nonequilibrium phenomena. Rather general formulas 
for the entropy are given in books on the theory of irreversible processes 
and also in reference 12. In order to apply the theory to the vibrating- 
dissociating gas out of equilibrium, the assumptions must be made that 
the vibrations may be thought of as being in equilibrium with themselves, 
so that they can be characterized by a vibrational temperature In 
equilibrium flow this temperature coincides with the translational tem- 
perature T of the gas but, in general, it has a different value. This 
temperature is related to the vibrational energy per diatomic molecule 
by the formula 

Tv. 

or by its inverse: 
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The expression (l3a) results when an assembly of harmonic oscillators is 
assumed to be distributed in a Boltzmann distribution at a temperature Tv. 

Evaluation of the entropy of the gas whose internal energy and 
equation of state are given by equations (1) and (2), respectively, yields 
(see appendix A) : 

To verify that S is indeed an exact differential of the four variables, 
T, p ,  x, and e,, one only needs to replace in equation (14) by its 
expression in terms of x and e, (eq. (l3b)). For a gas in equilibrium 
TV=T, and. x is determined by the equilibrium constant so that 

8/Tv 

and the right-hand side of equation (14) reduces to the left-hand side 
of equation (10) divided by 
use a unit of density which depends on the gas p=p' /C,  as is discussed 
in appendix A. This constant density C for different gases is listed 
in appendix B. 

T. For this to be true, it is necessary to 

Since the function S of equation (14) correctly represents the 
entropy in nonequilibrium flow only when the vibrations are distributed 
in a Boltzmann distribution, some comment about the distribution of 
vibrational energy levels is in order. Detailed investigations of this 
point have been made by Montoll, Rubin, and Schuler (refs. 15, 16, 
and 17). Their results show that in the situations usually encountered 
in gasdynamic problems, vibrational levels will be populated according 
to a Boltzmann distribution, characterized by a time-dependent vibrational 
temperature. The one circumstance in which significant deviations are 
expected to occur is when a fast chemical reaction is depleting or filling 
certain vibrational levels preferentially. This can occur only when the 
chemical relaxation time is short compared to the vibrational relaxation 
time. 
dissociating or recombining, the energy changes involved in the reaction 
are very large compared to the energy changes involved in vibrational 

Fortunately, when the reaction is fast and many molecules are 
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relaxation. 
F)3/QVi see R_nFendix B.) 
no serious error to result in flow problems from a very approximate 
treatment of the vibrations. 

(The relative amount of energy involved is of the order of 
Consequently, just in these cases one expects 

Adiabatic Flow 

For adiabatic flow the expression for the entropy change is obtained 
by combining the condition (lo), no heat exchange with the surroundings, 
with the general expression for the entropy, equation (14). 
entropy change will then be entirely due to the irreversible relaxation 
processes : 

The resulting 

According to the postulates of the theory of irreversible processes the 
expression (15) is always positive or zero for any actual physical 
process. In the usual language and notation of that theory, dev/dt and 
dx/dt are ''fluxes" (Jv, J,) and the coefficients of de, and dx in 
equation (15) are the corresponding "forces" (Xv, X,) . The quantity 

is the "affinity" (A) of the reaction, a measure of the deviation from 
chemical equilibrium. For any weii-defined flow the theory yields I 
relationship between the vibrational relaxation rate 6, and the rate 
of reaction 2, known as the Onsager reciprocal relation 

The subscript eq means that the derivatives are taken at the equilibrium 
value. This relation may become useful when one, for example, has 
knowledge of vibrational relaxation rates for gases not in complete 
chemical equilibrium, for then equation (16) gives information about the 
reaction rate in flows where the vibrations are out of equilibrium. Were 
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it not for the high activation energy of the dissociation reaction, the 
equation (16) could be replaced by a linear algebraic relation between 
the forces and the fluxes. 

- 

The Heat Flow Analogy 

When there are two heat reservoirs, one at a temperature TI and 
the other at a temperature 
changing its energy by an amount 

TI-, and energy flows between them, system I 
de; then the entropy increase is 

dS=de($ - i> 
TI1 

This quantity is always positive because the heat flc 
higher to lower temperature. 

is a1 rays from 

Comparison of equations (15) and (17) suggests that the relaxation 
process is quite analogous to heat flow, energy being interchanged 
between the "system of vibrations" at temperature 
translational motions'' at temperature 

Tv; the "system of 
T; and the "chemical system" at a 

At equilibrium these three temperatures would all coincide. 
analogy is quite correct when only the vibrations are relaxing and no 
reaction is occurring. However, when reaction is occurring the analogy 

This 

[ ( 

-x )fi( 1 -e -e/',) 
can be quite misleading, because the quantity log 

PX2 
cannot really be regarded as a chemical temperature, since its value 
depends not only on the chemical system, but also on the vibrations (T,) 
and the translations (T); so it is seen that while the chemical affinity 
plays 3 role similar to that of a temperature difference, it is in some 
respects quite different from a temperature difference. 

Explicit Form of the Entropy Function 

A consequence of the existence of the entropy function is that 
equation (14) can be integrated from some initial (0) point to some final 
point along an arbitrary path of integration in the four-dimensional 
e,, p, T space. Varying only one variable at a time in the order x, 
e,, p ,  T 

c 

x, 

gives, with the help of equation (l3b), 
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c 

(1-x)log - E - (I+x)log - P + - 5+x log - T 
EO Po 2 TO 

with a=ev+8(1-x) and ao=evo+8(1-x). The first four terms of equa- 
tion (18) arise from the change in 
tional energy, and the last two terms arise because of the density and 
temperature change. 
vibrating-reacting gas regardless of whether it is in equilibrium or not 
The familiar expression for entropy, when no vibrations and no reaction 
is occurring, is obtained from equation (18) when ev=evo and x=xo. 
A more compact way of writing equation (18) is 

x and from the variation in vibra- 

The expression (18) thus gives the entropy in a 

This dimensionless measure of the entropy is equal to the entropy per 
mole of gas divided by the universal gas constant R. 

11. ISENTROPIC FLOW 

Types of Isentropic Flow 

The condition that adiabatic flow be also isentropic is seen from 
equation (15) to be 

This isentropic condition may be written in a different form by introducing 
the relation 

e,=( I-x) E 
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where E is the vibrational energy per diatomic molecule. By use of E I 

and x as independent variables the condition becomes - 
I 
l 

I 

By inspection of equations (lga) and (lgb) the different kinds of 
isentropic flow can be listed. 

(1) Frozen flow, de,=O and dx=O. 
corresponds to low temperatures or relaxation lengths much 
longer than the physical dimensions in the problem. 

In a flow problem this 

(2) Full equilibrium flow; Tv=T and 

The right-hand side of this expression is the equilibrium 
constant of the reaction. This condition is satisfied when 
the relaxation lengths are very short compared to the physical 
dimensions of the problem. 

(3) Vibrational equilibrium, but the reaction is frozen; T,=T 
and dx=O. This flow occurs either at temperatures suffi- 
ciently low that dissociation is negligible, or when the chem- 
ical relaxation length is very long. In either case, the 
vibrational relaxation length must be short compared to the 
physical dimensions. 

(4) Chemical equilibrium, but vibrational energy constant; 

and 



This isentropic flow requires the condition 

de, = (1-x)dc - E dx = 0 

In microscopic terms, whenever diatomic molecules dissociate, 
some other diatomic molecules in the system will gain an 
amount of vibrational energy (on the average) equal to the 
amount that the dissociating particle had before it broke up. 
This appears physically unlikely, and it is concluded that 
this type of flow does not occur. 

(5) Chemical equilibrium, but vibrational temperature constant; 
dTv=d€=O 

with the constant 

Comparison of equations (20) and (21) shows that the equilibrium 
constant is different in full equilibrium flow than in the 
case of constant vibrational temperature. This type of flow is 
physically much more reasonable than the case (4). 

We now proceed to evaluate and list a number of relationships between 
flow variables for the cases (l), (21, (31, and (?), in particular for 
one-dimensional channel flow. 

Frozen reaction and frozen vibrations.- First the case is considered, 
where the chemical reaction may be regarded as frozen at some arbitrary 
degree of dissociation, xo, and the vibrations are frozen at an arbitrary 
vibrational energy evo . This is of course the usual case of constant 
specific heat, 

but is included here as a special case. Equation (14) becomes 
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giving 

5+x dT - dP - - - ( l + X )  - 
2 T  P 

2+2XO 

For a pure diatomic gas, the exponent is 2/5 and for a pure monatomic gas 
it is 2/3. 
relationships 

Using equations (2) and (9) , one readily has the further 

5+Xn 

For any given channel shape 
pressure, velocity, and density distribution. 
equation (14) given by 

A(y) , equations (22) give the temperature, 
The entropy is from 

( 22e 1 5+x S = -(l+x)log p + -log T + constant 2 

Frozen reaction - vibrations in equilibrium.- The next simplest case 
is the one in which the reaction is frozen at some arbitrary degree of 
dissociation 
translations. The dimensionless vibrational energy of the gas is then 
given by4 

xo, and the vibrations are in equilibrium with the random 

c 

*Here the usual harmonic oscillator approximation for the vibrations 
is made (see,e.g., ref. 18). 



ev= (1 -x) E 
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(23) 

with 

e - T - -  e E(T) = ee/~-, e/r<<i 2 

The number B=Bv/OD 
to hv/D, where hv is the energy of a vibrational quantum of the gas, 
and D is the dissociation energy. Inserting equation (23) into 
equation (14) readily verifies that the entropy is a unique function of 
T and p .  
expression (23) is inserted for 
of state (2) the following relationships : 

is a constant characteristic of the gas and is equal 

Integration of equation (14) and of equation (9) after the 
ev, gives with the help of the equation 

7+3xc] - 
2+2xo 

P O  = (e) expf- J) 

5+xn - " 
2+2xo 

= (8) expf- J) 
PO 

where J is defined by 
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The specific heat is given also by differentiation of equations (3) and 
(4), respectively, 

a€ + (I-xo) - dT 

Because 
heats equals 

e and h are functions of temperature only, the ratio of specific 
y ,  defined by equation (11) , giving 

dE 

Y =  dc 5+x0+2 ( l-xo) - dT 

7+3X0+2 ( I-Xo) - dT 

Instead of the usual relation, C P -Cv=l, it is found that 

as is evident from equations (26a) and (2611). 
required in equations (26a), (26b), and (26~) is obtained from equa- 
tion (23): 

The expression for dc/dT 
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-- L U ~  f, - - ^ m , , n n f l  Lr-L----y gcmrrring oscillator function E/T and the derivative 
dc/dT are tabulated in reference 18, pages 443-447. 

The entropy is found from equation (14) to be, for adjacent stream- 
lines, 

S = -(l+xo)log p + - 5+x log T+(l-xo) (28) 2 

When 

then 
This must be so because at sufficiently low temperatures no vibrations 
are excited and there is no difference between frozen and equilibrium 
vibrations. 

J = O ,  and ev=O, and the expressions (24) reduce to equations (22). 

In addition, when the opposite conditions, namely, 

are satisfied, then the relatively complicated expressions (24) become 
simple again. Expressions (23) and (27) give J=log T/To at high tern- 
peratures . 
specific heats 

Then the formulas (24) reduce to those of a gas with constant 

These expressions are 

u2 -uO2=( T, -T) (g+x) 
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Equations (32) are very similar in form to equations (22). When X O = ~  

they are identical because when the gas is completely dissociated, the 
vibrational energy is zero. 
tion), the effect of vibrations at high temperatures is to change 
from 7/5 to 9/7. 
involves using 7=(4+x0)/3, leading to 
tion. This value is intermediate to 7=7/5 (condition (29)) and 7'=9/7 
(condition (30) ) . Lighthill's approximation corresponds to replacing E 
by T/2. His approximation is better than equations (22) or (32) for the 
temperature range 
Lighthill's result whenever 
T<8/2. 
vibrations but, at temperatures close to 8 or smaller than 8 ,  over- 
estimate the effect of vibrations on the flow. Equations (24), on the 
other hand, cover the whole temperature range. 

On the other hand when xo=O (no dissocia- 
7' 

The approximation introduced by Lighthill (ref. 5 )  
7'=4/3 in the case of no dissocia- 

8/2Cr<8, while equations (3'2) are better than 
TX, and equations (22) are better when 

Equations (32) never underestimate the deviations from the frozen 

The approximations (29) and ( 3 0 )  depend on the magnitude of 8/T. 
A characteristic temperature is defined as &=hv/k, so that ev/T'=8/T, 
and the value of this characteristic temperature is listed in the table 
in appendix B. 
Zonvert dimensional quantities (e I ,  T ' , etc . ) to dimensionless quantities 
(e, T, etc.). 

and D/k, the constants needed to 
MA2 

It also gives 

Reaction in equilibrium - vibrational temperature constant.- In 
this case the analytic formulas are more complicated because the 
equilibrium value of x is given by the relatively complicated equation 

1 -E - -  2 
K(T,TJ --= - Px = yfie T 

.l -x 

with 

Here 
degree of vibrational excitation at which the gas remains frozen. 
no vibrations are excited, then y=1 and E=O.  The quantity p is 

Tv and E, and consequently y,  are constants which indicate the 
When 
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dimensionless. 
C c h a r a c t e r i s t . i r  of the gas (appendix B) . Solving equation (21) for p 
gives 

It is the physical density divided by the constant density 

Since the entropy is an exact differential, equation (33) can be inserted 
into (14) with 
x and T by integration. 
relation : 

dTv=O, and a two-variable relation can be obtained between 
Inserting equation (33) into (14) gives the 

(I+x) (~-2)] dx+ - - (,l+x) ( 1 - E )  dT I x(1-x) T2 
O=dS= 

Integration of equation (34) yields 

(34) 

Tx +integration constant ( 3 5 )  T 2 (1-x) ( L E )  

O+X) (1-4 + 3 
+ 2 log s =  

The equation (35) represents the entropy of the streamtube. 
is always interested only in entropy differences we put the integration 
constant equal to zero. 
x as an explicit function of T, the implicit relation is shown graphi- 
cally in figure 3(a). 
T i l - c  rather than physical temperature T I because the relation between 
x and T' depends on the specific gas used, while the relation between 
x and T / ~ - E  (eq. (35)) is universal. Each of the lines on figure 3 is 
an isentrope, so that a dissociating-recombining gas moving along a 
streamtube of variable cross section will always remain on one curve as 
its temperature changes. For a specific gas one may obtain the density 
corresponding to a certain temperature by looking up 
then using equation (33) to obtain the density. 
be obtained from the equation of state, (2); the velocity is calculated 
from equation (4) and the constancy of (ul2/2) + h: 

Since one 

Since equation (35) is not readily solved for 

The ordinate shows the dimensionless temperature 

x in figure 1 and 
The pressure can then 

Finally, one obtains the cross -seetiormi area from equations (33) and 
( 3 6 ) ,  and the continuity equation: 
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p u exp - 1 -€ A=& 0 0  T 
A, 1 - X  p ,/ T[ 2 (1-6) ( x0-x)  +7 ( To-T) +3 ( TOXO-TX)+~O~ 1 

Unlike equations (22), (pk), and ( 3 2 ) ,  the formulas (36) and (37) involve 
three variables, not just two. This is because of the inability to sol-re 
equation (35) explicitly for x in terms of T. Thus, figure 3(a) or 
equation (35) must be used in conjunction with equations (36) and (37). 
When all molecules are in the vibrational ground state, then ~ = 1  and 
E=O. 
and (37) are universal in the sense that for given initial conditions 
they yield unique values for velocity and cross-sectional area for every 
temperature T, and these values are independent of the nature of the 
gas. The quantity 7 is given by equation (11) if dc/dT=O and the value 
of 

In that case it is noted that like equation ( 3 5 ) ,  equations (36) 

dx/dT, defined by equation (34), are inserted: 

(7+3x) +( 2+3T-2~) dx 
dT 

( 3+x) +( 2-t-T-2~)  dx dT 

Y =  

The specific heats are from equations (3) and (4)  

cp =$l-- = + (1 + $ T-E) El 
Their ratio does not equal y because the temperature derivatives 
d~/dT)~, d~/dT)~, and 3~/3T)~ are not equal to each other. 

derivatives are from equations (33) and (2): 
The 

(38) 
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Reactions and vibrations in equilibrium.- If the chemical reaction 
as well as the molecular vibrations are in equilibrium with the transla- 
tional temperature, one obtains relations which combine the effects of 
equilibrium vibration and those of equilibrium chemistry. 
proceeds similarly to that of the previous section. 

The analysis 

Instead of equation (21), the equilibrium constant is 

The equilibrium constant, equation ( 2 0 ) ,  could have been obtained by 
direct evaluation from statistical mechanics rather than from the entropy 
function. For such a derivation, see any textbook on statistical mechan- 
ics; appendix C of this report contains a discussion indicating what 
physical motions give rise to the various factors on the right-hand side 
of equation (20). 

At low temperatures, where 

s >> 1 T 

equation (20) reduces to (21) with 
case because at such low temperatures the equilibrium vibrations are 
negligible, and the dissociation also is usually negligible. More useful 
is the opposite limit of high temperatures, 

E=O.  This is a rather uninteresting 

(42) e - << 1 T 

in which l-e-e/T=O/T. 
of equation (20 )  : 

The general expression for the density is in view 
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At high temperatures, when equation (42) applies, equation (43) may be 
replaced by 

-i/T 1-x e p = 0 -  
x2 f i  

The approximation made by Lighthill might be mentioned, which is 

1-x e-i/T 
X 2  

p = const - 

(44) 

(45) 

Lighthill shows that for oxygen and nitrogen his "constant" is really a 
slowly varying function of temperature which is increasing for small T 
and decreasing for large 

maximum of f i  (l-e-e/T), the coefficient used in equation (43). 
T, and has a maximum in the neighborhood of the 

Eliminating e, and p from equation (14) by the use of equations (23) 
and (43), respectively, one obtains analogously to equation (34) : 

Integrating the exact differential equation (46a) gives analogously to 
equation ( 3 5 ) ,  if the integration constant is again put equal to zero, 

(47a 1 -. 

For temperatures large compared to 6 ,  the expression (47a) reduces to: 

s 0 = * + x + 2 1 o g -  T2x 
T 2  .1 -x 



The entropy So 
than the 
While expression (47b) is independent of the nature of the gas (just as 
eq. (35)), expression (47a) does depend on 
every gas. The relation (47a) is plotted for oxygen (e=0.0367) and nitro- 
gen (e=O.O29l) in figures 3(b) and 3(c), respectively. The insensitivity 
of the curves to the exact value of 8 is evident, so that for practical 
purposes these curves may be regarded valid for either gas. Again the 
physical meaning of the curves is that of an isentrope, and equilibrium 
flow along a streamline is constrained to remain on one such curve. It 
is noted in figure 3 that for very high temperatures the gas will recombine 
again. The reason is that very high pressures correspond to these temper- 
atures. The temperature at which the gas is maximally dissociated is 
obtained by differentiation of equation (47a) and is: 

of equations (47%) and (35) has a different zero level5 
So<6j wl” equat lon  ( I ! ~ z ) .  They 8.r~ related by So(8)=So+l-2 log 8. 

8, a number different for 

This temperature is indicated in figure 3(b). 
temperatures for oxygen and nitrogen that the ionization of the gas would 
invalidate all quantitative aspects of the present model, which considers 
only the dissociation reaction. For less strongly bound gases, such as 
the halogens, however, the characteristic temperature is sufficiently low 
that the present model of the gas applies at that temperature. If the 
vibrations are frozen, the maximum dissociation occurs at a temperature 
equal to two times T*. 

These are such high 

To obtain the density corresponding to a specific temperature, first 
obtain x from figure 3 or by use of equations (47), then obtain p 
from equation (43). 
(2). 

Pressure then follows fron the equation of state, 
The velocity is, in view of the conservation of total energy, 

u2-uO2=2 (x0 -x) +7( To -T)+3 (Toxo-Tx) +2 ( evo -ev) 

where ev=B(l-x) /eelT-1; at high temperatures ev=(l-x)T, giving 

u~-uO~=~(XO-X)+~( To-T)+( T0xo-T~) (49b ) 

~~~ ~ 

5To compare with the tables of Treanor and Logan, it should be noted 
So(@) +24.30 and that they tabulate (S/R) which for oxygen (ref. 19) is 

for nitrogen (ref. 20) is So(@) +24.07. 
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The cross-sectional area is obtained from equations (20) and (49a): 

A somewhat simpler expression arises for high temperatures when 
equations (49b) and (44) are used; one finds pouo/pu is 

Equations (49) and (50) are to be used in conjunction with figure 2 
or 3, or equations (47). The value of 7 we obtain using equation (11) 
is 

9+~+(2+~) ;j;;; dx 7+3x+2(1-x) + (2+3T-~) 
U L  - U L  U I  Y =  

5+x+2(1-x) * + (~+T-E) dx << 1 7-x+(2-T) dx dT dT T dT 

The functions 
re spec tively . 
The quantity dx/dT 
(T >> e ) ,  it becomes: 

€(T) and dE/dT are given by equations ( 2 3 )  and ('27), 

is given by equation (46a); at high temperatures 

l +  1 ]-I 

T(.l+x) 2(l+x) 

Lastly, the specific heats are computed from equations (3) and (4) 

dT 



Here 
are from equations (44) and (2) for high temperatures. 

d€/dT is given by equation (27), and the other required derivatives 

For the intermediate temperatures T%, the exact expressions are readily 
obtained from equation (43), but they will not be given here explicitly 
because they are long expressions. For N, or 02, T is always much less 
than unity and the 1/T term is negligible compared to the 1/T2 or l/T3'2 
term in equations (53) and (40). 
tions (53) and (40) are identical. 

If these terms are neglected, equa- 

Application of Foregoing Results - Extension of Theory to Air 

To test the accuracy of the equilibrium calculation, exact tables 
for thermodynamic properties of oxygen (ref. 19) were compared with the 
results of the equations of the present paper. 
temperatures of 2000' K to 5000~ K, zrrd. densities from 
the standard sea-level density. 
agree better than within 1/2 percent over the whole range. 
of the degree of dissociation by solving equation (43) for 

The tables range from 

The entropy (eq. (47a)) was found to 
to ten times 

Calculation 
x, 

gave the results shown in figure 4(a). 
in figure 4(b). 
anharmonicity, vibration-rotation coupling, and electronic energy do not 
introduce serious deviations below 5000° K. 

The resulting enthalpy is compared 
The comparisons indicate that the neglect of vibrational 

Although we have considered one-dimensional f lows ,  the foregoing 
results may be useful in two- and three-dimenstonal flow problems. 
the relationships derived are valid along a line on which entropy is 

A l l  



ev0.77~ +O.23(l-x ) E  ( 553 ) N2 0, 02 

where E and E are the functions defined by equation (23a), the 
vibrational energy per nitrogen molecule or per oxygen molecule, respec- 
tively. Use of the complete equilibrium expression for ev would yield 
rather complicated expressions (see the already complex eqs. (24) and (47a) 

N2 02 

constant and on which the total enthalpy is constant. The expressions 
for entropy, such as equations (35) and (4'1) - valid along one stream- 
tube - may be used to compare the entropy on adjacent streamtubes. 
permits the calculation of entropy gradients and vorticity in the flow 
field. 

This 

The foregoing analysis assumed a dissociating diatomic gas of only 
one species, and is strictly valid only for experiments using such a 
relatively simple gas. Examples would be N2, 02, Cl,, Br,, and I,. Yet 
the result may be used with some modifications as an approximation for 
air. This is possible because there is a definite region of temperature 
and pressure in which the oxygen of the air is chemically active while 
the nitrogen is chemically inert in its diatomic form. There is another 
definite region of pressure and temperature in which the N, is chemi- 
cally active and the oxygen is completely dissociated. (For a careful 
definition of these regions see ref. 21.) The interaction of 0, with 
N, to form NO is relatively unimportant because NO gas has thermo- 
dynamic properties intermediate between 
little effect on the isentropic behavior of air. 

N, and 0,, thus having only 

In the temperature and pressure ranges where nitrogen dissociation 
is unimportant, the degree of dissociation for oxygen is defined as 

x =  
02 2n +no 

02 
(54) 

Then the basic equations in the analysis, namely, equations (2), (3), 
and (4), and also the differential relations (9) and (lo), remain valid, 
provided x is replaced everywhere by 0.23~ . The 0.23 occurs because 
oxygen of the air is assumed to be 23 percent of the total mss, and 
nitrogen 77 percent. 
equilibrium constant, equations (21), (20), and (44), apply. In these 
expressions x must simply be replaced by xo, and the density p by 

02 

Also, in this approximation the expressions for the 

L 

0 . 2 3 ~  (the density of oxygen). The complete equilibrium expression for 
vibrational energy is 

. 



for one species). 
t g n n r i n g  the difference between EnT- and En- is 

A useful approximation to expression (55a) obtained by 
-'c -c 

ev = ~(1-0.23~0,) ( 55b 1 

This differs from the vibrational energy of a pure species (eq. (23)) only 
in the replacement of x by 0.23~0 . The function E is given by equa- 
tion (23a). Here a reasonable value of 8 is 8=0.238o2+O.778~,. At high 
temperatures, T>>8, the quantity E is equal to T independent of 8 ,  
and the expression (55b) becomes exact. 
formula for the full-equilibrium entropy of air is: 

2 

With the approximation (533)  the 

When the dimensionless result is converted into engineering units, the 
appropriate value of 
oxygen), and the correct value for 
weight of cold air). 

D/K is 59,000° K (the dissociation energy of 
 MA^ is 29.0 (the mean molecular 

Calculation for air in the range where the oxygen is almost completely 
dissociated and the nitrogen is chemically active can also be carried 
through. At first sight it would seem that at these high temperatures 
one would have to include the electronic energies. Actually it is not 
much of an error to neglect the electronic energies provided most of the 
nitrogen is undissociated; when most of the nitrogen is dissociated the 
error becomes important. The reason for this is that molecular nitrogen 
remains in its ground state until extremely high temperatures, while 
atomic nitrogen is more readily excited. In figure 1 are shown the percent 
of energy in electronic form of each of the four species, 0, 0,, N,? and N, 
as a function of temperature. Figure 2 gives the corresponding result 
for air. For example, at atmospheric density at 7000' K, the fraction 
of the energy in electronic form is, according to figure 2, about 1/2 
percent, certainly not a prohibitive amount for approximate calculations. 
At the high temperatures where electronic excitations coniribute at 
equilibrium, application of the present method would give the frozen 
excitation limit for the flow. When nitrogen is dissociating and the 
oxygen is in completely atomic form, we require 

(57) nN 

N2 

x =  N2 2n +nN 

and the basic equations, analogous to equations (2), ( 3 ) ,  and (4) , are, 
with M=29.O, 



p_f_ = (1.23+0.77xN2) RT' 
P '  

e=ev + T - (5.23+0.77xN2)+0.77xN2 
2 ( 5 9 )  

The vibrational energy is due only to the nitrogen vibration and so its 
equilibrium value is of nearly the sane form as the vibrational energy 
of a single species; that is, ev=0.77(1-xN2)EN2. It is evident that an 
analysis of this situation for air, based on equations (58) , (59), 
and (60) , is no more complicated than the analysis of the single species 
based on equations ( 2 ) ,  (3), and (4) . 
different numerical coefficients in equations ( 5 8 ) ,  (59), and (60) . The 
resulting full equilibrium entropy for air is 

The only difference lies in the 

1.23 (le ) -0. 77xN,+O. 7 7 ~  (e 8 IT -xu2) 
+ 2 log Te + 

T 8 (1 -XN, 1 
s =  

111. NONEQUILIBRIUM FLOW 

It is not possible to discuss nonequilibrium flow as generally as 
isentropic flow. 
and explicit results can be obtained only for flow which is specified not 
only by its initial state but also by some further condition. 
here is to illustrate the method by consideration of specific situations 
for which the isentropic solutions are known. 
instead of frozen or equilibrium flow, relaxation is taking place and 
ask, "Eow will the flow differ?" 
specified, the answer is not unique. 
must be modified to read: 
on the flow, how will the relaxing flow look?" 

The dimensions of the streamtube enter as a new variable, 

The aim 

We then suppose that 

Even when the relaxation rates are 
For a unique answer, the question 

"Suppose an additional constraint is placed 

For example, in isentropic flow, in a shock tube of constant cross 
section, the pressure, density, and temperature will be constant downstream 
of the shock wave. 
the pressure is constant, then all the other variables must be constant 

Conversely, if in isentropic flow along a streamtEbe 
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along the tube. The tube will of necessity have constant cross section. 
i r i  ielaxing fla:: n_ny_ctmf. FrPsSiire: constant density, and constant cross 
section are generally incompatible. 
cross section, what will the pressure and density variation be?" or, 
"Given constant pressure, what will be the shape of the streamtube?" 
(See fig. 5, to be discussed later.) 
constraint would be knowledge of a channel shape 
distribution p(y). In references 7, 8, and 10 examples of relaxation 
with specific channel shapes are worked out in detail. 

We can ask, however, "Given a constant 

A more general form of the required 
A(y) or of a pressure 

Relaxing Vibrations 

Let us first choose the simplest case to illustrate the above 
remarks; namely, the case where there is no reaction, but the vibration 
is relaxing. Let us suppose that from a knowledge of the thermodynamic 
and flow properties without relaxation, we can estimate the vibrational 

relaxation rate, - - - as a function of y. From the basic 

equations in part I, the cross-sectional area is computed as a function 
of y, with the assumption that one of the other variables is constant. 
The area is related to the variables, density and velocity, of part I 
through the continuity equation which may be written in the form 

dy U dt 

By making use of equation (61), and by putting x=O in the earlier 
equations (2), ( 3 ) ,  and ( k ) ,  as well as (9) and (10) which require 
adiabatic flow, cne obtains: 

( pr e s sur e constant ) (@.a) 

(density constant) ( 62b ) 

(temperature constant) (62~) 
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log A = o (cross-section constant) 
dY 

(62d) 

A particular application of equations (62) is to a gas which has just 
passed through a strong shock wave; vibrations are at first unexcited, 
but will become excited in the ensuing flow through collision over a 
distance A which depends on the temFerature and density. Whatever the 
distance may be, dev/dy From 
equations (62a) and (62b) it is obvious that if the pressure is constant, 
the streamtube must contract; similarly, if the density is constant, the 
streamtube contracts. On the other hand, if the temperature is constant 
and the free-stream Mach number is larger than 1.2, the streamtube has to 
expand. In isothermal flow a possible situation behind a very weak shock 
wave is a streamtube which contracts at first and then expands when the 
velocity is sufficiently reduced. These results may also be put in the 
inverse way: If geometrical or other considerations tell us that stream- 
tubes are expanding while there is vibrational relaxation, then neither 
constant density nor constant pressure can be a correct assumption, but 
constant temperature is not ruled out. 

will be greater than 0 over - some distance. 

In figure 5 the streamtube cross sections are plotted on semilog 
paper as functions of ev/T3, where T, is the equilibrium temperature 
and M, is the free-stream Mach number. The subscripts 1, 2, and 3 are 
used to denote ''free stream," "immediately behind the shock," and "at 
full equilibrium," respectively. At equilibrium ev/T, is unity, while 
immediately behind the shock it is zero. If the vibrational energy ev 
increases behind the shock approximately exponentially with distance, and 
this is rather typical behavior, the abscissa of figure 5 may be regarded 
as an approximate linear measure of distance behind the shock instead of 
a logarithmic measure of vibrational energy. 
is clear that for a nonrelaxing flow all the curves in figure 5 would 
coincide with the straight line, labeled A. 

Regarded in this way, it 

The formulas for the flow of constant chemical composition behind a 
shock wave now are summarized with ev as the independent variable for 
the different cases. These formulas are easily obtainable by integration 
of the differential flow relations of part I. Subscripts 2 and 3 refer 
to conditions immediately behind shock and at final equilibrium, 
respectively . 

Constant density flow. - 

P(Y) = P, 
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where 

e,+B e,+8 
e, 8 

e, l o g  - - log - de,) = 0 

Constant pressure flow.- 

P' = P2' 

u = u2 

Isothermal flow. - 

T(Y)  = T2 



For isothermal flow, the vibrations may never be able to reach equilibrium, 
because only the kinetic energy (1/2)u2, 
vibrational energy. 

is available for conversion to 

Constant cross section.- For a fuller treatment of this case, 
including the reaction rate, see the following section. 
of the interesting relations are given when density is used as the 
independent variable p=p(y). 

Here only some 

The equation for 
e, 
equation 

T ( p )  was obtained by elimination of the velocity and 
from equations ( 7 c ) ,  (9), and (10) which gave the differential 

.. 
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* 

Integration leads to the above formula. This is the only one of the 
a-uwve foi-;;i;lac fsr vhj rh  the derivation is not fairly obvious. 

It is noted that the relation between p and p behind the shock is 
n not - of the polytrope form 

which includes finite reaction rates see equation (67). 
p/p,=(p/p,) . For the corresponding result 

Relaxation length.- To obtain some physical feeling for the manner 
in which the characteristic feature of relaxing flow, namely, its depend- 
ence on linear distance, disappears when the relaxation length is very 
long or very short, consider the simple example of constant pressure flow 
behind a normal shock wave, and a typical exponential relaxation: 

Z T[1-exp(- $1 
where eve is the equilibrium vibrational energy, which for strong shocks 
is approximately equal to the local temperature. Then the simple resulting 
behavior is (see sketch (a)): 

I * 
Y 

Sketch (a) 



It is seen from equation (63) that the area changes by a total of 2/7 of 
its original size, and that this occurs over a very short distance if A 
is short, and over a long distance if A is long. For the large A 
limit the flow is frozen and the cross section constant as the sketch 
indicates. The small A limit is equilibrium flow, and constant cross- 
sectional area, constant temperature, and density. Were one to sketch 
A/A2 y/A, the three curves would coincide, indicating 
that h is an appropriate unit of length, from the point of view of 
similarity. 

as a function of 

Simultaneous Chemical and Vibrational Relaxation 
Behind a Normal Shock 

The flow behind a normal shock wave where vibrational lag and 
dissociation of the gas are occurring simultaneously is next discussed. 
Freeman (ref. 6) has discussed the case without vibrational relaxation. 
We shall consider the case of constant cross-sectional area, so that the 
results apply to the interpretation of shock-tube experiments. 

In a typical shock-tube experiment one might measure the pressure 
and the temperature as a function of position behind the shock front. 
One would like to deduce from this the degree of dissociation, x, as a 
function of position, y, and also the development of vibrational energy, 
e,, as 2 function of position, in order to obtain the rate of the reaction 

and the rate of vibrational exci- 
tation. Given the state of the 
gas on the cold side of the shock 
(region 1 in sketch (b) ) ,  one can 
obtain the state immediately behind 
the shock (region 2) from an ideal 
gas calculation, and one can also 
easily obtain the state of the gas 
after it has reached equilibrium 

q7- 
Shock front 

Sketch (b) 
(region 3) from an equilibrium calculation (ref. 22). 
with the flow as it proceeds from region 2 to region 3. 

We are concerned 

For this (constant area) flow the continuity equation becomes 

p 'u=m 

and equation (6) becomes 

du dP - = -,I ; 
du dh 

u - = - i  
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. where the dimensionless pressure parameter p=(p '/m) (MA,/NoD) . The 
equation or state becomes 

The relation between pressure and density is seen from equations (65) 
and (64) to be not of the polytrope form, but 

To obtain x as a function of pressure and temperature, we only need to 
eiiminate the density from equation (66) with the help of equations (63) 
and (64) to give 

Use of expression (4) for the enthalpy gives for the vibrational energy, 

where expression (68) for 
desired. 
tional energy of the gas as a function of position, if the pressure and 
temperature have been measured as a function of position. 
that both the vibrations and the dissociations can be obtained from the 
temperature and pressure measurements. 

x may be inserted into equation (69) if 
Equations (68) and (69) yield the dissociation energy and vibra- 

It can be seen 
- 

In solving flow problems one may have the inverse situation from 
the experimental one just described. One may have a good idea of the 
relaxation times of the vibrations and the reaction, that is, one knows 
x(y) and ev(y), but would like to calculate the effect of these rate 
processes on velocity, pressure, density, and temperature. Thus, x and 
e, are regarded as the independent variables and the velocity, etc., is 
is expressed in terms of x and e,. Again, everything is known in the 



40 

regions 2 and 3 and the intermediate region is of concern. The speed u 
is computed in terms of 
and (66) one immediately has density, pressure, and temperature from the 
knowledge of u(y) . 
equations (64), (65), and (66), a quadratic equation for velocity u is 
obtained : 

x and e,, because from equations (64), ( 6 5 ) ,  

From equations (5) and (4) , and with the help of 

= (uZ2+h,) -ev-x- [ 2;;;)]u(uz-u+P2) 

The appropriate so.lution is given by 

with 

7+3x 
2 (l+x) P = (u,+J?,) 

6 = r$ + h2)-(ev+x) 

The discarded solution of equation (7l), when it is a positive real 
number, implies supersonic flow in region 2, a condition that cannot be 
realized physically. 

To show, at least qualitatively, how the dissociating-vibrating gas 

e,(y) and x(y) which take into account the gross features of the 
relaxes to equilibrium, we shall use the simplest possible expressions 
for 
mutual interaction between the two processes. 
treatment is not yet possible at the present state of knowledge for the 
coupled relaxation process of any specific diatomic gas. 

A quantitatively reliable 
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. 
A very naive approach would be to assume an exponential increase of 

y;?? vibrational energy, ev/ev =1-e , along the sLv& tcb? zr,d ~ I s n  R sim- 
3 

ilar expression for x, completely ignoring any coupling between them. 
This assumption could lead to absurd results for, in the case that the 
chemical relaxation length A, is much shorter than the vibrational 
length A,, and the gas is fully dissociated at equilibrium, the equations 
would predict considerable vibrational energy in the region 
although, in fact, there are no diatomic molecules in that region and the 
vibrational energy should be zero. 

A, << y << A,, 

To obtain a more reasonable expression for the relaxation process, 
we note from equation (23) that 

and we then postulate an exponential dependence for the vibrational 
energy per molecule rather than for the total vibrational energy (this 
is in agreement with Bethe-Teller theory, ref. 22): 

We further expect physically that the degree of dissociation, x, 
will depend on the vibrational temperature because (if such a temperature 
exists) the relative probability of the diatomic state is proportional 
to the vibrational partition function fv(Tv) . Thus (x2/1-x)-[l/fv(T,) ] 

and then, at least for small x, x- l/Jf,(T,) . For x near unity the 

the vibrational energy becomes so small anyway that the coupling must be 
quite unimportant. This leads us to postulate a form 

[ 1 

It c m  be seen from equation (75) that even when 
dissociation keeps changing as long as vibrations have not reached their 
equilibrium. This is physically correct because the temperature keeps 

y/h, >> 1 the 
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changing and the local equilibrium value of 
One feature of these equations is that if 
rapidly relaxing variable will overshoot its equilibrium value and then 
return to equilibrium feeding some of its energy into the other variable. 
The graphs, figure 6, illustrate this point. 
that the amount of dissociation at 
depends on how rapidly the vibrations are reeching equilibrium, conversely, 
for the vibrations at y=Av. 
a shock strength 
of air. The final values of x and ev are x,=0.107, and ev =O.O5O2. 
Thus, the gas is 10 percent dissociated and the approximation that 
x << 1, which is implicit in equation ( 7 5 ) ,  is valid. 
equations (75) and (74) into (73) and then substituting equations (75) 
and (73) into (72) gives the flow velocity and the density. 
is shown graphically for a few different values of 
is evident from the figure that the dissociation process dominates the 
effect on density; energetically, it is more important than vibrations 
in this example. Further, it would not be correct for this example to 
divide the relaxation region into two parts in each of which only one 
variable relaxes - no matter what the ratio of The only case 
where the density is not a smoothly varying monotonic function is the 
case where A,=O. 
drop below equilibrium and finally reaches equilibrium from below. The 
various curves of 
continuously and smoothly with the parameter 

x changes along with it. 
A, << A, or Ac << Av, the - 

The graphs also illustrate 
y=A, is not a fixed quantity but 

The graphs were dram for a pure oxygen gas, 
M,=10, and a density of one-tenth of sea-level density 

3 

Substituting 

The latter 
It Ac/Av (fig. 7). 

Ac/Av. 

There an overshoot in density appears followed by a 

p(y)/p(o) in figure 7 form a sequence varying 
Ac/Av. 

REMARKS CONCLUDING 

If appropriate units are used (ref. 5 ) ,  the equations for the 
thermodynamics and one-dimensional flow of a dissociating and vibrating 
gas in eqJilibrium are not prohibitively complicated. They can all be 
expressed in algebraic form when electronic excitations are neglected, 
but without resorting to Lighthill's ideal gas. The resulting formulas 
for equilibrium flow are accurate to within a few percent at temperatures 
where ionization is negligible. It is found that for flow of the gas in 
chemical equilibrium, the temperature and the degree of dissociation are 
convenient independent variables to use. They are related through the 
entropy, a constant along the flow. With rather slight modifications the 
formulas worked out here can be applied to a gas mixture such as air. 

There also exist isentropic flows in which the vibrations are in 
equilibrium and the reaction is frozen, and also flows in which the 
reaction is in equilibrium but the vibrations are frozen. The distinction - 
is made between constant vibrational energy and constant vibrational 
temperature flow. The latter is expected to correspond to the observable 
frozen vibrations flow. 
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. 
The nonequilibrium flow analysis is much simplified by the introduc- 

t i n n  of a vibrational temperature. The entropy becomes a point function 
of the four variables, temperature, density, iiegrec of d l a ~ a z i z t i c r - ,  ~ n d  
vibrational energy. 

Flow relaxing with a finite time is qualitatively different from 
frozen or equilibrium flow because the entropy increases along the 
streamtube. The flow cannot be treated with the same generality as isen- 
tropic flow because some specific mathematical constraint is required to 
fully specify the flow. Below are given some of the detailed results 
which come from the examples treated: 

1. In the relaxation region behind a shock wave in a shock tube, 
pressure and density are related by a simple formula which is not of the 
polytrope form. 

2. If the relaxing flow behind a normal shock is at constant density, 
or at constant pressure, the streamtube contracts. The contraction for 
constant density flow is larger, the higher the free-stream Mach number. 
For constant pressure the total area change is about a factor of 2/7. 

3. Relaxing isothermal flow behind a normal shock corresponds to a 
rapidly expanding streamtube. 

4. If in a shock tube both vibrational relaxation and chemical 
relaxation are occurring behind the normal shock wave, the degree of 
dissociation and the degree of vibrational excitation can be calculated 
from measurements of the pressure and temperature distributions behind 
the wave. 

When vibration and dissociation are both occurring simultaneously, 
the two processes can, in general, be expected to interact. The coupling 
can be included in a simple model of the relaxation. When the reaction 
is rplatively very fast, this model of the relaxation process yields the 
result that the density overshoots its equilibrium value, decreases to 
below its equilibrium value, and finally reaches equilibrium from below. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif ., Feb. 26, 1959 
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APPENDIX A 
. 

DERIVATION OF ENTROPY EQUATION 

The idea of evaluating the entropy of a gas with vibrational 
temperature T, and with translations and rotations at a temperature T 
is to calculate the entropy of the two systems separately and then to 
add them. The entropy of the system of harmonic oscillators alone at 
temperature T, (see any textbook on statistical mechanics) is 

The entropy of the mixture of free atoms and dumbbell diatomic 
molecules at a temperature T is: 

( A 2  1 - x+5 + - - log T-2x log 2px-(l-x)log(l-x)p+fi 'tr+rot 2 

where S+ is a constant. The corresponding energies are 

(I-X) e - 5+x 
e, = ' etr+rot - 2 

e 

From equation ( A 3 )  we see that equation (Al) may be written 

S, = - e, - (l-x)log(l-e -6 /T,) 
Tv 

dS, = - de, + log(l-e-e/TV)dx 
TV 

( A 3  1 
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Differentiating equation (A2) gives: 

The addition of equations (Ab) and (A5) yields 

+ const dx 1 dS = - de, + - - -  x+5 dT (l+x) 
T, 2 T p 'X2 

The const can be evaluated from the entropy constant S+. Alternatively 
it may be evaluated from the equilibrium constant as follows: 

At equilibrium comparison of equation (A6) with equation (10) gives 

= 1 + 1  (l-x)J!F (1-e - B I T )  

cons t+log T 2  p 1x2 
(A7 1 

Furthermore, the equation f o r  the equilibria3 cozlstant is (again, see any 
book on statistical mechanics) : 

- =  p 1x2 cJT (I-e -B/T),-~/T 
1 -x 

where C is a known numerical constant characteristic of the species of 
gas (values are tabulated in appendix B). Let us choose C as the unit 
of density; then comparison of equations (A7) and (A8) shows that the 
constant in equation (A7), and also (A6), is 1/2. This completes the 
derivation of equation (14). 
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-11,300 

(3+2 e ) 

'v, 

;324 

!274 

5396 

812.9 

465.1 

308.8 

2 -130 

1317 

12 37 

APPENDIX B 

CHARACTERISTIC CONSTANTS FOR VARIOUS GASES 

I 
f A" 

-1,277 

(4+2 eT) 

(4+2 e-) 

-10,910 

k + 2  e?) 

- 
L 

3.3 

L 

L 

L 

1 
- 

Note : 
h2 - 0 1. Symbols: 0, = 5 , OR = , 0 D  = f , - - 

8D 

778.6 

1761 

I = moment of inertia of the diatomic molecule 

2. Conversion of units: The factors used were 1 e, = 11,607~ K, 
1 cm'l = 1,439' K; a convenient table for converting energy units 
is given in reference 18, page 471. 

3. The electronic partition functions fAe and fA, e are constants to 
the approximation used here. These constants represent essentially 
the degeneracy of the ground state of the atom or molecule. 
ever they are not constant, the exact electronic partition functions 
with their temperature dependence are given in parentheses. 
working with temperatures at which the constant value given above 
is not the best numerical approximation to the electronic partition 
function, one should correct C accordingly. For example, if 
working with chlorine near 5000° K, then 
value of C 
(5,5/4>', nearly a factor of 2. 
give results for C that are within 5 percent in the temperature 
range for 1500' K to 8000' K, so that is within 2-1/2 percent 
of its exact value. 

When- 

If 

fAe = 5.5 ,  not 4; the 
is then corrected (see below) by multiplication by 

The constants given for oxygen 

x 



T 

. 
' .  
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4. The quantity 

c 
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APPENDIX C 
. 

DISCUSSION OF THE EQUILIBRIUM CONSTANT 

The quantity called the equilibrium constant in this report is 

X2 nA2 K(T) = p - = const - 
A2 n 1 -x 

It is a measure of the probability (or number) of two free atoms in the 
gas relative to the probability of a diatomic molecule (two bound atoms). 
According to statistical mechanics, these probabilities can be expressed 
in terms of the partition function fA for a free atom and the partition 
function f for the diatomic molecule. A2 

In the numerator the T312 
of freedom of each atom. In the denominator the T512 is from the five 
degrees of freedom of a dumbbell diatomic molecule - three degrees of 
translation and two of rotation. 

counted as a degree of freedom.) 
the molecular partition function due to the vibrational degree of freedom. 
It is noted that vibrations are an exception to the rule: Each degree 
of freedom contributes a factor T112 . 
text that vibrations do not contribute just 1/2 k 
but an amount which depends on temperature.) 

comes from the three translational degrees 

(The spinning about its own axis is not 

The factor (1-e O/T)-l is the part of 

(Similarly, it is seen in the 
to the specific heat, 

. 

Finally, the e- factor simply takes into account the fact that 
between the ground state of a diatomic molecule and the ground state of 
the dissociated atoms there is a certain dissociation energy D. If 
temperature were expressed in degrees instead of the dimensionless T 
used, the factor would be e -D/kT 

The derivation of the equilibrium constant and calculation of the 
partitior, function can be found in the books on statistical mechanics in 
the bibliography. 
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